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RANKING AND SELECTION IN DESIGNED EXPERIMENTS:
COMPLETE FACTORIAL EXPERIMENTS#

by

g

Edward J. Dudewicz
and i

Baldeo K. Taneija

ABSTRACT

As early as the first paper of Bechhofer on ranking and

selection in 1954 it was recognized that, with a ranking and
selection goal as well as with other goals such as estima-
tion or hypothesis testing, it might be desirable to carry

SRR ... ¢ VY

out one's experiment in some design other than the complete~
ly randomized design., HNevertheless, over the years almost ;
all of the papers in the area have developed their methods 3
and theory explicitly only for the completely randomized

design. In this paper we review what is known about ranking ¥
and selection in design settings other than the completely

randomized design, and then proceed to new results on the

complete factorial experiment setting.

®# This research was supported by Office of Naval Research
Contract No. N0O0O1u4-78-C~-05u43. g
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1. INTRODUCTION

In the first paper on ranking and selection, Bechhofer (1954)
recognized the importance of allowing for experiments carried out
in some design other than the completely randomized design. For
full references see Dudewicz and Koo (1981). In this paper we:
briefly survey the state of knowledge of ranking and selection in
designed experiments (Section 2); discuss factorial experiments
without interaction in some detail (Section 3); and give new
results for factorial experiments where interaction may be present

(Section 4).

2. RANKING AND SELECTION IN DESIGHNED EXPERIMENTS

In the basic formulation of the ranking and selection problem,
there are K populations (sources of observations) Tys eensy Ty with
respective unknown means Bys voey My for their observations, normally
distributed with common known variance o? > 0, and the goal is to
select a population whose mean is Urgys where HE1] S M1 £ -e S ¥y
are the ordered Hys eves Ugo Achieving this goal is called making a
Correct Selection (abbreviated as CS). Bechhofer (1954) gave a
single-stage procedure which guaranteed that P(CS) > P* whenever
¥rxl T Mrx-11 2 §%#(1/K < P* < 1, 0 < 6*%), There have been many papers
written in the area, with extensions in many directions; see Dudewicz
(1980).

Bechhofer (1954) dealt mainly with the completely randomized
design, but also considered the 2-factor factorial experiment without
interaction, giving the Factorial Procedure SP1 of Section 3 below.

He briefly noted how to similarly solve the r-factor factorial
experiment (again without interaction} with SPl1. Also see pp. 77-82
of Gibbons, Olkin, and Sobel (1877) for examples, restricted to the
no-interaction case.

Bawa (1972) compared Bechhofer's 8Pl to the traditional One-at-
a-time Procedure SP2 in a no-interaction setting, and found 8Pl is

superior in asymptotic efficiency.
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A procedure for the factorial experiment with interaction
(Interaction Procedure SP3 in Section 3 below) was given in
Dudewicz (1977), and independently simultaneously by Bechhofer
(1877).

For the problem of selecting the best regression, Dudewicz
(1976, Section 1l4.4) noted the solution (also see Chapter 9 of
Gibbons, 0lkin, and Sobel (19%77), with an erronecus claim of
originality on p. 24l). The problem of selecting the largest
interaction was addressed by Bechhofer, Santner, and Turnbull
(1977). Rinott and Santner (1977) applied inequalities tc design
an experiment to select the best treatment in an analysis of

covariance model.

3. RANKING AND SELECTION IN TFTACTORIAL EXPERIMENTS:
NO INTERACTION

Suppose an r-factor (r > 2) factorial experiment with kj
(kj > 2) levels of factor j (j = 1, 2, ..., r). Assume observations
are normally distributed with known common variance ¢? > 0 and that
for an observation taken at {level il of factor 1, level i2 of factor

2, «.., level ir of factor r}

r .

(i)

.. ,-):u+Za.~
1112 1r j=l lj

are unknown

j =1, 2, ..., r) where u and ucj)

(i: =1, 2, ..., kj; ij

3

parameters with

afd? = g (32 1, 2, -uvs 1.
. 1.
1j=1 3

[ e B

For each fixed j (j = 1, 2, ..., 1}, let

(3) (1) ¢
oriy L @23 £ - 20
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denote the aij), co ey u£3) in numerical order. Each factor-level

combination (il’ i2, ey ir) is called a population, and a "best"
population (among all K = klkz .+ . K, populations) is any one with

maximum E(X, . ,.. . ), i.e. any one with mean
i,i i
172 r
- (1) (2) (r)
S I 3 I 36 IRARLEEL W B
1 ? r
Define (for j = 1, 2, ..., 1)
- $3) (i)
§. = «a - a
K- - -
3 [ 3] [kj 1]
Then set 2* = (61*, 62*, ey Gr*) and P* (0 < 61*, 62*, cee s Gr* < g

1/K < P*¥ < 1) and seek proceduresaanﬂdch guarantee the probability
requirement

P(CS|§?) > P*  whenever E > §*  componentwise,

Three procedures proposed in the literature are the following.
Procedure SP1 (Factorial Procedure). Take N independent

observations from each of the K populations. Let ng) denote
]
the (marginal) sample mean of all observations having the jth

factor at level i, (j = 1, 2, ..., r). For each j, let
Yé%% S 3 Yéi)} denote K§J), cies Yil) in numerical order.
i .

Select the level associated with the largest (marginal) sample

mean of each factor, i.e. with Xéi)], Yéi)], ey YEE)], and
1l 2 r

assert that that population (factor combination) is best. (NX

observations are used.)
Procedure SP2 (One-at-a-time Procedure). Tix the level of

each factor except factor j, take Nj observations at each level
of factor j, and compute the sample mean at each such level.
Then select the level (of factor j) yielding the largest such

4
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sample mean. Proceed similarly for j = 1, ..., r (keeping
"selected" levels fixed for the corresponding factors), taking

a set of independent observations at each stage of experimentation.
Finally state that the pogulation corresponding to the selected

factor levels is best. ( Z kj Nj observations are used.)
i1

Procedure SP3 (Interaction Procedure). Take M independent

observations from each of the K populations. Select the population
yielding the largest sample mean as best. (MK observations are
used.)

In order to compare procedures SP1l, SP2, SP3 let Ny, Ny Ng
denote the respective smallest number of observations each procedure
needs in order to guarantee the probability requirement. From Bawa
(1972) we know

byl ~a,Ns
n, = min {NK: N such that I (1 -e 13, > P*®}
j=1
and
r r -a.N.
n, = min{ § k:N:: (N., +evs N_) such that 1 (l-e 13y > P%*},
2 yz1 1) 1 r 321 -

where (for 3 = 1, 2, ..., )

(6%)2
a. = — ’ NZ = %15 R
J 4o ? J 3

Using asymptotic calculus as in Bawa (1872) and Dudewicz (1969)
it follows that

K.
ny o ~40%log(1-P*) max {—d—]} + o(1-P*),
1<j<r (5?72
r k.
n, ~ -40%log(1-P%) z J_+ 3
jT1 (6%)2

where a v b means the limit of a/b is 1 as P* + 1 and B does not
depend con P*, Also (Dudewicz (1969))

X
(6%)?

ng -40%1log(1-P*)

B thdis 000 il
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where P(CS|SP3) » P* is guaranteed for & = urpy - Wig.1] 2 e
Therefore
ks
max {-—-‘""“"_}
n, 1lgige (65072
ARE(SP1, SP2) = 1lim == = ~gz— A ,
pral D2 j
j=1 (6,.%)?
3
n 2 -
ARE(SP1, SP3) = 1lim -+ = (8%)°  nax {——fl——},
pa+1 M3 X 1<i<r (sj*)2
n. 2 r X
ARE(SP2, SP3) = 1im 2= LD 7 .
p*+1 M3 i=1 (5j*)2
Note tnat
r . r .
- - (3) (3>
§ = Upyar=Hryo11= (vt [ a } - max {w+ } orp’q - 8;}

.. 81,

mln{él, .

hence § > Q* and §%* = min(§,*,
requirements for SPl, SP2, and SP3.
where kjf(éj*)z is maximized,

X

2
(6%) T? <1

2
(6_%)

ARE(SP1, SP3) =

(since §* < 8 _* and k, < K), and

&y2 r k
ARE(SP2, sP3) < {8837 =S
- (6c*)2

Hence SP1 and SP2 are each more efficient than SP3.

case kl = k? = L., = kP = k and 61* = 62* = ... = Gr
o1 1
ARE(SP1, SP2) = Z, ARE(SP1, SP3) = T
ARE(SP2, SP3) = —F§I .

k

&

vy Gr*) furnish comparable probability
Letting ¢ be that j (1 < J < r)

In the "symmetric"
= &%




Thus, when there is no interaction, SP1 is best and
SP3 is worst. However, we see (Section u4) that
SP3 is fully resistant to interaction, whereas SPl and SFP2Z

are not.

b, RANKING AND SELECTION IN FACTORIAL EXPERIMENTS: INTERACTION

We will now study factorial exveriments with interactions,
So, we suppose an r-factor (r > 2) factorial experiment
with kj levels of factor j (3 = 1, ..., r) and assume our
observations are normally distributed with known common

variance 6% > 0 and that if X. . . 1is an observation taken
1yip...iy,
at {level il of factor 1, level 12 of factor 2, ..,, level ir

.

of factor r} then i

I
) r (i) T T (37341
é EOXy i, .1 ) T WY c‘i-l ' .E .E 1-li2 Tt
i 172 r 31=l Y 32=1 ]1=1 3y 39
1 r r v Gydpeeddey) (12,000
;" + z E . v Z s I i i + Qi i... i
A .. 3r311 3r521 31=1 3373504070y 172 r !
] g' (ij = 1, 24 40y kj for 3 = 15, 2, «.., r) where u and the
‘ a's are unknown parameters with
1
1B ks .
1 (31) .
- o, =0 for Iy s 1, 2, «cas T 3
1, =1 lj
r. jl 1 3
K. K

1 (33 12 (3,3

S . L b P
lj =1 1,73, 1.2-1 31173,

(for j,(=1, 2, ..., r) < jo(=1, 2, ..., r));
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l 1 ‘313233’ RSN S PE PR F A (3;3533)
LYy = L% i i, T P s, 70
lj =1 31 32 ]3 1'j =] Jl Jg i3 lj =1 31 32 i3 i
1 1 2 3 !
‘ (for 31(=1, 2, ceey r)<j2(=1, 2, +.ey rI<ig(=l, 2, vy PY)y .
I and so on; and lastly :
) i k K
LT I TS B U O L I A Sttt
L 3 S eer = =
i & i1=l 111 cedy o=l 1112... ir=l iyi,. 1
ié . (ij =15 2y ceos Ky tor 3 = 1, 2, ..., r). For each fixed
i 3 (3 = 15 2, +ves ri, let
(1) (1) (3
g ary3y £ %23 £ - =2 k)
denote the uij), uéj), .oy u;]) in numerical order. ;
.. 3 1

This r~factor experiment may be conceived of as an r-
dimensiocnal cuboid. Each factor- -level combination

(il, iz, cees 1 ) is called a gogulatlon, and a "best"
population (among all X = kyk,... populatlons) is any one

with L(Y i i } maximized over all r-tuples (11, 12,
SN ) }called cells). {
Once observations have been taken, let Xl 1 1 i
2° r :

denote the sample mean of all observations in 081L
. ir)’ and define the (marginal) sample means

it i

(i), i, -

by

k2 k3 r
I _ e LXK i
5 12=1 13=1 r=l l dgeee

‘l.-...= (i =1 2, o--,k)g i
iy KKy« - Ky 1 ’ 1 i
L
8 ]
|




kl k3 kr
¥ Yy oo 3 ii,...d
. =1 iys1 i=1 172 r
Yulz.lot. = klk3'..kr‘ (12 - 1, 2’ LEL R kz),
Ky K L
D A A
‘ 1171 i,=1 ipoysl ptoreedp
Y--....lr = k1k2"'_kr-1 (1P =1, 2, ..., k‘).

We now wish to prove (as indicated briefly in Section 3) that
SP1 and SP2 are vitiated by interaction, while SP3's validity
remains unaltered.

Theorem 1. Let n, be the smallest sample size for which
procedure SPl guarantees P(CS|SP1) > P* whenever e §% in
a model with zerc interactions. Then in a general {(non-
zero interaction) model,

inf  P(CS|SP1) < g

Q&%)
where Q(48%) = {(pl, Bos «ves pK): MEKI“H[K-1]3 > &%,
&% = min{§,%, ..., Gr*}}'

Before proceeding to prove Theorem 1, we will show
that {in the presence of interaction) not only may the cell
selected by SPl not be the best cell, but it may be the
case (with high probability) that, for each of the r
factors, no column with the respective largest (marginal)
sample mean contains the best cell. The proof will utilize
an addition of interaction to achieve such a situation.

To verify the claims of the above paragraph, consider
a model with nc interactions. By labeling and relabeling
the cells, we may arrange our experiment so that

9
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Bleanidin

N

(N (2) (r)
E(X, . ) U+t oa + o, LN T
iyip.00d, £ 1] [12] [1r]
(il T 1, 2y ey kl’ i, =1, 2, «uus Kpseows i, = Ly 24 vvey k),
K =
33 (i)
still with ) ag =0 for j; =1, 2, ..., r. (Thus,
i. =1 j
1y 1

cell (1, 1, ..., 1) is now the worst cell, while cell
(kl’ k2, ey kr) is the best.)

Now, to achieve the desired situation, we assume without
12 2 (3 =2, 3, ..., r) and
that all interactions are zero except for highest-order

loss of generality that kj > k

intevactions. For the case kj= 2, see Remark 2 following
the proof of Thecrem 1. In the case k1 > 2, we add highest-

order interactions to each E(X. . ...; ) as multiples of a

i-i -
number "a" (yet to be chésen) aicgrding to a scheme such that
cell (1, 1, ..., 1) becomes the best cell for large positive
"a", To motivate this scheme for r-factor experiments, we
first illustrate it for  two-factor experiments, next

show how to extend it to three-factor experiments, and

finally explain the general case {(r > 3).

For a two-factor experiment (v 2}, add multiples of

a {(yet to be chosen) to each E(Xi i ) as specified in
12

Figure 1 to form model E(Xi ; (a)). Note that there is a

172
simple pattern over most of the table of Figure 1 (except
for row 1 and column 1) and that (except for cell (1,1))
row 1 and column 1 entries are chosen so the appropriate
row or column sum is zero. Finally, the cell (1,1) entry
is chosen so that the row 1 and column 1 sums are each

zero also, The added multiples of "a" are the interactions

k k
1 2z
“ili) (a), and satisfy | aﬁlg) (a) = } aslg) (a) = 0
12 ip=1 M1%2 i1 172
i0

-k

=
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Labalin o

for all a. (Note that cell (1,1) is best for large positive
a.)
Now "a" can be chosen so that, letting fi ; (kl’kQ) be
. : . . 2
the Figure ' entry in row 1, and column i,, we

simultaneously satisfy

(1),.€2), (12) (1), (2) , (12)

wrapygteryytern (3)3“+“[113+“[i2]+“i112(a)+6ﬁ(V(i1’iz)f‘l’1>)’
i.e.

(1), (2) (L (2) .. .
u+a£l]+a[l]*fll(kl’k2)aiu+a[il]+a[i2]+fili2(kl’kz)a+6*(v(ll,l2)¢(lﬂj),
i.e.

(1), (2 (1) , (2)
fagj y * ogiyy? - fega) * et v o
a >

(V(iy,1,) # (1,1

(where it is evident from Figure 1 that the denominator is > ().
For this purpose it suffices to take

(1) (2) (1) (2)
fagi,1 * otkyy? - fopad et © O
a=6 .
(kl"l)(kl-z)(kl+3)

For a three-factor experiment (r = 3),

):u+a§1)+a§2)+uga)+aglg)+a§13)+a§23)+a(123)

E(X: - - ; R T Rk
11393 i, iy Tig Tigip 1313 dpig 1jiapiy

(i, = 1, 2y vovs ko3 dn = 1y 2, ceus kg3 i3 =1, 25 oovs K3ds
1 1 2 2 3 3

where ¥ and a's are unknown parameters with

k k k
1 2 3
): Ggl) = 2 0.§2) = a§3) =0,
11-1 1 12-1 2 13-1 3
k k k k ¥ k
1 (2 2 ) <F oam. 8 I, 2 2,y 4(23),
IR S @557 agiic= b eytie aj 3.%0s
il=l 172 12=l 172 il=1 173 13=l 1°3 i2=1 273 i3=1 23

12

S §




K
(e 2
ii.d

K3
= = 1
=1 17273 i

ot123) o£123)

i =1 rpipij izl t1tets

- 1 X

2

Figure 2, Three-factor experiment in the form of a cuboid.

(Factor j has k; levels (j = 1, 2, 3).)

Factor 3 1

Nt anaaN
\\<§\\>\
\\\\ 2
NARS
RN
D)

Figure 2 shows the three-factor exepriment as a cuboid.
We now add second-order interactions to the cells as
multiples of a (yet to be chosen), as follows. In the last
kl—l of the ky levels of factor 3 (i.e. levels k3—k1+2, vess
ky of factor 3) add ~f,

13

g

wdats i




where f. . (ky, k,) is as spccified in Figure 1. The
i1, 2

other levels of factor 3 have zero second-order interactions
in each cell, except for the first level, in which we add
filiz(kl’ kz)a(kl-l) in cells (i,, i,, 1), where again

£ (kqy, ko) is as specified in Figure 1. This makes
2

ili
1
the c¢olumn sums (corresponding to factor 3) zero, and the

interactions all satisfy the model restrictions. (Note
that cell (1, 1, 1) is best for large positive a.)
Let f£. . . (ky, kK,, k)
i,ii57010 F20 73
of a added to cell (il, iy i3) (il =1, vees Ky

denote the number of multiples

12 =1, ey Ky i3 31, .. ka). Then a can be chosen
so that we simultaneously satisfy

(1), (2), (3) (1) (2) (3)

Yy i 1, kskgokgla +8%(v(iy,i,,15) # (1, 1, 1)),

111,
i1.e.
(1), (), 3Dy, (1), (2), (3)
TR IS A SIS DAL SR AL SR AL Sh it
a > V(i) ,1,,1504(1,1,1))

£1110kysky,kg) - filigiékl,kz,kg)
(where the denominator is > 0).
For this purpose it suffices to take
(1) (2) (3) (1) (2
gk 1 * 9k, * ol 1l -lon] * o
(kp-23 (ky =10k (K +2)

[ g
+
Q

oy o~

W

fand
L
+
On
%

The general case of an r-factor experiment (r > 2) is

handled by induction on r, using the method shown to procead
fromr = 2 to r = 3 above, Namely, suppose we have an
interaction scheme for an (r-1)-factor experiment where
all the interactions are zero except the highest-order
ones, In order to extend it to an r-factor experiment,
suppose that the rth factor has kr levels. In the last




R e~ RS

e e e e -

YO P

(k -1) levels of factor r (that is, from k p~kit2 through k.,
both inclusive), we add interactions of highest-order as in
the (r-~l)-factor experiment scheme, but with sign qf each

entry reversed. The rest of the levels (except for the first
one) receive zero highest-order interaction in each cell.
Then to make appropriate interaction sums zZero, we add
highest-order interactions in the fipst level in such a way
that each entry is (kl-l) times the corresponding entry of
the (pr-l)-factor experiment scheme. As before we may

find a large positive number a such that cell (1. 1. ... 1)

is best, .
We are now in a position to prove Theorem 1.

Proof of Theorem 1. Let n; for SP1 satisfy P(CS|SP1) > P#
whenever Q Q* in a model with zero interactions (whlch, of

course, implies a sample size N per cell, with n, = NK).
Now Yl......’ EZ......’ cees Ykl""" are 1ndependent normal

random variables with (possibly different) means and the
same variance ]ﬁpz/(NK), hence

IS 7% SO, xk ...

. »

are independent N(0,1) random variables when we define

Gy 21, 2, L, k).

Now consider model E(Xi i (a)) with "a" chosen so large
eed

1
172z
positive that cell (i1, 1, ««e.3 1) is best, according to
the interaction scheme previously given. Then, in this model

with interaction,

15
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P(cs|sPr1) = PIX = max(¥ s X s seey X s
I l'.l'l‘ -l'..Ql!. 2..'!" kl..' .
| g‘.l.'l.. : de(g.l'|||. R.z.j"', "., R‘.k?. L] I)’ :
) * e 0 i
| i Rar mmax(® R s e X g )]
1 [ '] . v e "9 s r
. = PlY,, > 0, Y1, > 0, vues Yl’kl—l > 0
<
ém %2% > 0, Y22 > 0, - Y2,k2-1 > 0
E le > 0, sz >0y ev.y Yr,kr-l > 0]
where
? Ylil - il--o . - i1+190-.-.0 (il = l’ 2’ ter klnl)’ .
g Yziz = x-l....' x.,i2+1,. . (i2 = l, 2, " aan k2"1)> !
i' YI‘i = X...l--l —Y.oq-l.’i +l (iI‘= l’ 2, .’.,kr‘-l)‘
r r
Now (Yll,..., Y

1,k -1% Yauoeeen Yo g 00 woed Yppoeeos Yo )

has a (kl + k2 + ...+ kr-r)—variate normal distribution with

202k :
- (1) (1) _ 1 .. E
E(Ylil) = a[il} - a[il+13’ VaI‘(Ylil) = N (ll =1, 2,..., kl-l),
202k \
- (2) (2) _ 2 .. -
E<Y2i2) = a[i23 - a[12+13, VaP(Yziz) = wr— (i = 1, 2, ..., ky-1), .
) 20k 1
_ () (r) - r i = -
E(Yl"ip) - a[ir] - a[ir+l], VaP(Yrir) - NK (1P - l’ 2, .. 3 kr‘ 1); ¢
o’kl
Cov(Y,. , Y1540 = wg— 44y £ 10D,
1 1
ok
R 2 .. ..

16




a’k,

~ - s 2

\oOV(YPir, Yril:) - "N‘K" (lr # lr),

Cov(inj, Yiil) = 0 (j# 2; j = l’ a v e 9 1"" 9- = l, LR Y P)
(il=l, 2,-v-, kl"l; izzl, 2,.0-3 kz“l;l-';ir‘zl, 2,.'-, kr“].)-
Thus (Yll"'.,Yl,kl—l)’(.Yzl’...,Yz,kzﬂl)’...,(le’...,Yrgkr"‘l) are

independent, so

r
P(CS{SP1) = Tm_PLY:y >0, ¥

j=1 3 32

Considering the first factor,

PIY 120, ¥,50,..., Y1,kp-1 >0]

= P[gl,,....= maxf?l..._'_,XQ......,...,Xkl‘.
< P[Y*....‘.: max(?f_._._.,fg..'...,...,Xﬁl...
= _1
1l
Proceeding similarly, we find that
1 .
P[le>0, Yj2>0’“"Yj,k--l>0)iT-‘(3“2’ L, ),

]
hence

P(CS|SP1) < 1/K

as was to be proven.

‘Remark 1. Note that for all schemes of adding interactions
and for all kj >2(3=1,2, ..., v), procedure SP1 still
achieves probability at least P* for selecting the cell

r .
associated with u + ) aéi)3 (which may not be the "best"
3=1 j




[P ey a LB AT ¢+ G WS ek X gapamEes TIhw e an e ram cmenr walh ey

cell after adding interactions). This is true because

the sum of interactions in each row and in each column

is zero and so the (marginal) sample means do not change.

Remark 2. In the case kl = 2, we add interacticns in
such a way that cell (kl’ k2, ey kp) does not remain
best. From Remark 1, it then follows that

douni Sl DIDE DR A e

+
>
Fs
¥
&
>

P(CS|SP1) < 1-P%

8 el

Theorem 2. Let n, be the smallest sample size for which
procedure SP2 guarantees P(CS|SP2) > P* whenever $ > 8%
in a model with zero interactions. Then in a general
(non-zerc interaction) model,

inf P(CS{SP2) < 1
) QIE*) min k.
e l<jer J

* = . - =m3i
E - where Q(&%) {(“l’“2""’“K)'“[K] “[K-1]35*’5* mxn{é*,...,ég}}.

-~
[ro-
‘

Proof of Theorem 2. Let n, for SP2 satisfy P(CS|SP2) > P%

whenever Q > Q* in a model with zero interactions. Let factors

be ordered as in the discussion following the statement of

Theorem 1, and consider model E(Xi i ; (a)) with a set so
pipeei

thatcel1 (1, 1, ..., 1) is best. Suppose, without loss of

generality, that the experimenter decides to first fix levels

i of each factor except factor J (and hence experiments across
o the levels of factor j). Define events

g' Fji = {Experimenter starts with level ij of factor j},
- j

Eji {Experimenter selects level ij of factor i},

. (ij =1, ..., kj; j =1, ..., r) so that event EllEQI“'Erl

corresponds toc a correct selection. Now, for any €>0, a may
be taken sufficiently large that




P(Ell Epy --- Erllei.) < € (1j £ 1). 2
Now, letting Fj = Fjl Ll.LJijj {the event that the
experimenter starts with factor j) and taking

= z . L) = 1/k. del
P(F-llfj) ce P(F]k-!Fj) 1/k; as a reasonable mode

j +
in 1light of no prior kn&wledge (on the part of the experimenter)

as to which levels are better than others, we find

k.
J
P(CS|SP2, Fy) = ]  P(Ej; T,y ... By Fyy [F) i
1.=1 ] 3
3
53
= ¥ P(F.. |F:)P(E;y E s E L{Fss )
1721 Jigh ] 11 721 rl ]1]
]
kj i
= P(Fjlle)P(EllEzl...Erlle1)+_I= P(Fjij]Fj)P(EllEzl...Eplleij)
K. J
1 J € 1 L
h + E X St e
kj 1j=2 3 3
and the theorem follows.

Theorem 3. Let n, be the smallest sample size for which
procedure SP3 guarantees P(CS|SP3) > P* whenever $ > é* in
a model with zero interactions. Then in a general (non-

zero interaction) model,

P(CS|SP3) > P* whenever Y[k > &%

min{di,...,ég}.

= ¥Ek-1]




Proof of Theorem 3. In a model with zero interactions, suppose that cell

(ml, Moy «ons mr) is best. Then, if M observations per cell have been taken,
whenever § > §% componentwise we have
N T oA

F(CS|SP3) = PI¥ = max (¥, . P
b T R SR PUTUIN 1pdge-edy
LE lﬁ =1, 2, , kl (i =1, 2, s )]
‘_ _T"_:. . .
. _ _ I‘("<r,".<lr";x~_,...mr) ‘\Rll:?...fv)
: S RIRE G S ¥ .
:i . 172 r 172 T fg?
Py ‘M
g; Ll T, ey Ry =1, 2, e, )]
: " ._ . min{ﬁ*s---sé‘;ﬁ}
> P[Xg . . < I; + .
pigeer iy SL PR /57- :
Y :
1551, 2, ovey Ry (321, 2, ony )]
A L
1 4
ane = M min(&d,...,88) !
1 inf P(CSISP3) = f ¢ d(x + . ) e(x) ox., ‘
5}5:’: -
VT i
:
where ¢(+) and ¢${*) denote the standard normal disiribution andg Jdersity
} . functions, respectively. For this inf to be > F* we need
- h (FH)o? !
M2 i {8y, L eED? :
-4
where hK(P*) is the solution h of the equation i
* LK
] ¢ "l(x+h)¢(x)dx = P&

Now in a general (non-zero interaction) model suppese that cell

At Bt 1

(cy, €55 vvvy €. 15 best, M as above is used, and
M 1—Hr g > &% = min{é&¢, ..., 8%}. Then _
[KI7Y[K-11 1 : E(X. C)-E(R. )
) _ CyCyeneCy i, .00
P(CSisp3)y = PLRY ., < X® + 2 : .
1,i,...1i = "c,caa..0 —r
172 r 172 T a/o
- ] - 3 . H
i.:21, 2, .., kj (3:=1, 2, ..., )1}
J
v 6% VM i
> P[¥X% ., . < X% o—, ]
- 13ip.- iy = Toge, e, 0 ]
B350, 2, o, kel = 1, 2, ey 1) )
@
- *
= ) o lx ¢ 8 Myuax > pa
w g -
and the theorem follows. !
20 Lk
;o
i
l‘?‘;‘




Thus, while procedure SP3 is fully robust to the pre-
sence of interaction, procedures SP1 and SP2 may be fully
vitiated by interaction. One may therefore wish to estimate
interaction size and choose accordingly between SP1 and SP3
in practice. An SP4 which incorporates this idea (acting
as does SPl when interactions are '"negligible" and as does
SP3 when interactions are “large'") is now being developed.

21
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